X-bar and R Charts	
	1

X-bar Charts & R Charts

- Used for measurement data
- Assumes population is normally distributed
- Upper and lower control limits usually 3 standard deviations above and below the mean of the process

Constructing x-bar charts

- Collect small samples in equally spaced intervals over time
- Usually 20-30 periods
- n is the sample size collected each time
- k is the number of samples collected over time

• For each sample, calculate the mean

$$\overline{x} = \frac{\sum x_i}{n}$$

• For each sample, calculate the range

 $range = X_{largest} - X_{smallest}$

 $\mathbb{C}^{\mathbb{N}}_{\mathbb{C}}$

4

- On the next slide, find a chart of factors for both x-bar and r charts
- To find an appropriate factor, look for the sample size, n, collected each time

4

Constructing	k-ba	ar c	har	ts
So if one had	n	A2	D3	
chosen 4 items to	2	1.88	0	3.2
measure each time.	3	1.023	0	2.5
use 0.729 for A ₂	4	0.729	0	2.2
= D and D are used	5	0.577	0	2.1
\square D_3 and D_4 are used	6	0.483	0	2.0
	7	0.419	0.076	1.9
	8	0.373	0.136	1.8
limits for r charts.	9	0.337	0.184	1.8
	10	0.308	0.223	1.7

Г

Constructing r charts

- The center line for the r chart is already calculated with the calculation of r-bar
- Now just calculate the upper and lower control limits

Constructing r charts

• Calculate the upper control limit

 $UCL_{R} = D_{4}\overline{R}$

• Calculate the lower control limit

$$LCL_R = D_3 R$$

An Example

• A bank manager decides to study waiting times of customers for teller service at the noon lunch hour (noon to 1pm). He selects one customer every 20 minutes to measure the time the customer enters the line to the time he or she reaches the teller window. He records this over several days.

¢.

4

4

Example data					
Day	Tin	ne in Minu	tes		
1	7.2	8.4	7.9		
2	5.6	8.7	3.3		
3	5.5	7.3	3.2		
4	4.4	8.0	5.4		
5	9.7	4.6	4.8		
6	8.3	8.9	9.1		
				4	

Cal	cula	ted x-l	bar a	and I	r	
Day	Tin	ne in Minu	utes	xbar	r	
1	7.2	8.4	7.9	7.83	1.2	
2	5.6	8.7	3.3	5.87	5.4	
3	5.5	7.3	3.2	5.33	4.1	
4	4.4	8.0	5.4	5.93	3.6	
5	9.7	4.6	4.8	6.37	5.1	
6	8.3	8.9	9.1	8.77	0.8	
						4

Calculate center lines
$$\overline{\overline{x}} = \frac{\sum \overline{x_i}}{k}$$
 $\overline{R} = \frac{\sum r_i}{k}$ $= 40.1/6$ $= 20.2/6$ $= 6.68$ $= 3.37$

Calculate control limits

ControlLimits_x =
$$\overline{x} \pm A_2 \overline{R}$$
 = 6.68 ± 1.023(3.37)
= 6.68 ± 3.45
Upper Limit = 10.13
Lower Limit = 3.23
 $UCL_R = D_4 \overline{R}$ = 2.575(3.37)
= 8.68
 $LCL_R = D_3 \overline{R}$ = 0(3.37)
= 0

Drawing the r chart

- Process is the same for all charts!
- Draw the center line first
- Place the lower and upper control limits on the graph
- Plot the ranges for each sample

¢!

Connect the points

